Identification of New Dystroglycan Complexes in Skeletal Muscle

نویسندگان

  • Eric K. Johnson
  • Bin Li
  • Jung Hae Yoon
  • Kevin M. Flanigan
  • Paul T. Martin
  • James Ervasti
  • Federica Montanaro
چکیده

The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies. Because loss of dystrophin in Duchenne muscular dystrophy (DMD) leads to an almost complete loss of dystroglycan complexes at the myofiber membrane, it is generally assumed that the vast majority of dystroglycan complexes within skeletal muscle fibers interact with dystrophin. The residual dystroglycan present in dystrophin-deficient muscle is thought to be preserved by utrophin, a structural homolog of dystrophin that is up-regulated in dystrophic muscles. However, we found that dystroglycan complexes are still present at the myofiber membrane in the absence of both dystrophin and utrophin. Our data show that only a minority of dystroglycan complexes associate with dystrophin in wild type muscle. Furthermore, we provide evidence for at least three separate pools of dystroglycan complexes within myofibers that differ in composition and are differentially affected by loss of dystrophin. Our findings indicate a more complex role of dystroglycan in muscle than currently recognized and may help explain differences in disease pathology and severity among myopathies linked to mutations in DAPC members.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical characterization of the epithelial dystroglycan complex.

Dystroglycan is a widely expressed extracellular matrix receptor that plays a critical role in basement membrane formation, epithelial development, and synaptogenesis. Dystroglycan was originally characterized in skeletal muscle as an integral component of the dystrophin glycoprotein complex, which is critical for muscle cell viability. Although the dystroglycan complex has been well characteri...

متن کامل

Differential Vicia villosa agglutinin reactivity identifies three distinct dystroglycan complexes in skeletal muscle.

We present evidence for the expression of three alpha-dystroglycan glycoforms in skeletal muscle cells, including two minor glycoforms marked by either patent or latent reactivity with the N-acetylgalactosamine-specific lectin Vicia villosa agglutinin. Both minor glycoforms co-isolated with beta-dystroglycan, but not with other dystrophin/utrophin-glycoprotein complex components, suggesting tha...

متن کامل

Disruption of Dag1 in Differentiated Skeletal Muscle Reveals a Role for Dystroglycan in Muscle Regeneration

Striated muscle-specific disruption of the dystroglycan (DAG1) gene results in loss of the dystrophin-glycoprotein complex in differentiated muscle and a remarkably mild muscular dystrophy with hypertrophy and without tissue fibrosis. We find that satellite cells, expressing dystroglycan, support continued efficient regeneration of skeletal muscle along with transient expression of dystroglycan...

متن کامل

Dystroglycan glycosylation and its role in matrix binding in skeletal muscle.

Dystroglycan is an essential component of the dystrophin-glycoprotein complex. Three glycan sequencing studies have identified O-linked mannose chains, including NeuAcalpha 2,3Galbeta 1,4GlcNAcbeta 1,2Manalpha-O, on alpha dystroglycan. Chemical deglycosylation of alpha dystroglycan, antibody blocking studies, and glycan blocking studies all suggest that the O-linked glycans on alpha dystroglyca...

متن کامل

A new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers

Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013